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Abstract 

Cancer prevalence is the proportion of people in a population diagnosed with cancer in 

the past and still alive. One way to estimate prevalence is via population-based 

registries, where data on diagnosis and life status of all incident cases occurring in the 

covered population are collected. 

In this paper a method for the estimation of the variance of complete prevalence at all 

ages combined has been investigated. The proposed solution consists of estimating an 

upper bound of the variance of interest. Simulations show that the upper bound works 

well, however a theoretical proof has not been found. 

The paper is organized as follows: after a brief introduction in section 1, the problem is 

illustrated in section 2; a new solution is proposed in section 3 and applied to a 

simulated data set in section 4; and finally some technical advice on how to modify the 

existing software is proposed in section 5. 
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1 Introduction

The Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute
reports annually the number of persons alive following a diagnosis of cancer, or complete prevalence
of cancer. This statistic is estimated in 2 steps:

1. The number of alive cancer cases reported to the SEER data after 1975 are counted and
survivors among people lost to follow-up are estimated and added. This is denoted limited
duration prevalence and can be calculated using the SEER*Stat software.

2. The proportion of prevalence that is unobserved, i.e. prevalence of cases diagnosed prior to
1975, is estimated using the completeness index method. Limited duration prevalence is ad-
justed to represent complete prevalence or lifetime prevalence. The completeness index method
(Capocaccia and De Angelis, 1997) is implemented into COMPREV, a new software that calcu-
lates complete prevalence by adjusting limited duration prevalence imported from SEER*Stat
with the completeness index.

Variance of limited duration prevalence is given in Clegg et al.(2002), variance of the completeness
index and consequently of complete prevalence is given in Gigli et al.(2006). In both cases the
variance is provided in 5-year age groups.

Extending the variance of complete prevalence to all age-groups requires an extra effort, since it
implies estimating some covariance matrices. This is the aim of the present work.

2 The problem

We briefly recall some notation; further details can be found in Gigli et al.(2006).
For a fixed birth cohort c and a fixed age at prevalence x

• complete prevalence Nx(0, x) is defined as the portion of people aged x alive on a certain date
who had been diagnosed of the disease between ages 0 and x;

• limited duration prevalence Ñx(x − L, x) is the prevalence at age x estimated by population-
based cancer registries and is based on a limited observational period L (Gail et al., 1999);

• modelled prevalence N̂x(0, x; ψ̂) is a parametric estimate of the prevalence at age x, based on a

complex function (convolution) of incidence and survival parametric models; ψ̂ is the maximum
likelihood estimate of the vector of the incidence and survival parameters (Verdecchia et al.,
1989);

• completeness index Rx(L; ψ̂) =
N̂x(x− L, x; ψ̂)

N̂x(0, x; ψ̂)
is the proportion of modelled prevalence at age

x that is observed (Capocaccia and De Angelis, 1997);

• an estimate of complete prevalence at age x is obtained by combining limited duration preva-
lence and completeness index

N∗
x(0, x; ψ̂) =

Ñx(x− L, x)

Rx(L; ψ̂)
(1)
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• the analytical approximation to the variance of the completeness index is

var[Rx(L; ψ̂)] ≈

(

∂Rx

∂ψ

∣

∣

∣

∣ψ=ψ̂

)T

V̂

(

∂Rx

∂ψ

∣

∣

∣

∣ψ=ψ̂

)

, (2)

where V̂ is the covariance matrix of the mle vector ψ̂ and ∂Rx/∂ψ is the vector of partial
derivatives of Rx with respect to the components of the parameter vector ψ (Gigli et al., 2006).

We want to compute the variance of the estimated complete prevalence for all ages

var(N∗) = var

(

agemax
∑

x=0

Ñx

Rx

)

=
agemax
∑

x=0

var

(

Ñx

Rx

)

+
agemax
∑

x 6=y;x,y=0

cov

(

Ñx

Rx

,
Ñy

Ry

)

, (3)

knowing that:

cov(Rx, Ry) ≈

(

∂Rx

∂ψ

∣

∣

∣

∣ψ=ψ̂

)T

V̂

(

∂Ry

∂ψ

∣

∣

∣

∣ψ=ψ̂

)

(4)

(an extension of (2)), and

var

(

Ñx

Rx

)

≈
1

R2
x

var(Ñx)− 2
Ñx

R3
x

cov(Ñx, Rx) +
Ñ2
x

R4
x

var(Rx) (5)

(Gigli et al., 2006).

3 A solution

Let

• ω = (Ñx, Rx, Ñy, Ry) be a vector of 4 components and let ω̂ be the vector of estimates;

• g(ω) = Ñx

Rx
and h(ω) =

Ñy

Ry
be two different functions of the vector ω. Notice that the random

variables Ñx 6= Ñy and Rx 6= Ry, hence the two functions g and h are distinct.

We compute cov(g(ω), h(ω)) in terms of cov(ω), as in (4):

cov(g(ω), h(ω)) ≈

(

∂g

∂ω

∣

∣

∣ω=ω̂

)T

cov(ω)

(

∂h

∂ω

∣

∣

∣ω=ω̂

)

,

where ∂g
∂ω =

(

1
Rx

, −Ñx

R2
x

, 0, 0
)T

, ∂h∂ω =

(

0, 0, 1
Ry
, −

Ñy

R2
y

)T

,

and

cov(ω) =













var(Ñx) cov(Ñx, Rx) cov(Ñx, Ñy) cov(Ñx, Ry)

cov(Ñx, Rx) var(Rx) cov(Ñy, Rx) cov(Rx, Ry)

cov(Ñx, Ñy) cov(Ñy, Rx) var(Ñy) cov(Ñy, Ry)

cov(Ñx, Ry) cov(Ry, Rx) cov(Ñy, Ry) var(Ry)













,

2



and obtain

cov

(

Ñx

Rx

,
Ñy

Ry

)

≈
1

RxRy

cov(Ñx, Ñy)−
Ñy

RxR
2
y

cov(Ñx, Ry)−

−
Ñx

R2
xRy

cov(Ñy, Rx) +
ÑxÑy

R2
xR

2
y

cov(Rx, Ry). (6)

When we substitute (5) and (6) in (3), knowing that the covariance matrices are symmetric, we
obtain

var(N∗) ≈
agemax
∑

x,y=0

{

1

RxRy

cov(Ñx, Ñy)−
2Ñy

RxR
2
y

cov(Ñx, Ry) +
ÑxÑy

R2
xR

2
y

cov(Rx, Ry)

}

. (7)

Notice that when x = y, cov(Ñx, Ñy) = var(Ñx) and cov(Rx, Ry) = var(Rx) and the summands in
(7) coincide with (5).

Equation (7) is somehow problematic to apply, since cov(Ñx, Ry) does not have an explicit ana-
lytical formulation. We would like to show that (7) has an upper bound given by

var2(N
∗) =

agemax
∑

x=0

1

R2
x

var(Ñx) +
agemax
∑

x,y=0

ÑxÑy

R2
xR

2
y

cov(Rx, Ry), (8)

the latter being easier to compute (see section 5). Hence we need to show that var(N∗) ≤ var2(N
∗),

that is

var(N∗)− var2(N
∗) =

agemax
∑

x,y=0

1

RxRy

cov(Ñx, Ñy)−
agemax
∑

x=0

1

R2
x

var(Ñx)−

− 2
agemax
∑

x,y=0

Ñy

RxR
2
y

cov(Ñx, Ry) ≤ 0. (9)

In general covariance matrices are positive definite, therefore

agemax
∑

x,y=0

1

RxRy

cov(Ñx, Ñy) ≥ 0;

agemax
∑

x=1

1

R2
x

var(Ñx) ≥ 0;

−2
agemax
∑

x,y=0

Ñy

RxR
2
y

cov(Ñx, Ry) ≤ 0.

Simulations (see next section) show that

agemax
∑

x,y=0

1

RxRy

cov(Ñx, Ñy)−
agemax
∑

x=0

1

R2
x

var(Ñx) =
agemax
∑

x 6=y;x,y=0

1

RxRy

cov(Ñx, Ñy) ≤ 0, (10)

that is a matrix made of the off-diagonal elements of the matrix cov(Ñx, Ñy) is negative definite. In
that case (9) holds.
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4 A simulation study

A simulation study has been implemented in Gigli et al.(2006) in order to verify the assumption
Ñx

R3
x

cov(Ñx, Rx) = 0 in the estimation of the variance of complete prevalence at fixed age (5). Below

is a brief description of the simulation; the same results can be used to estimate cov(Ñx, Ñy) and
cov(Ñx, R̃y).

LetW denote the set of SEER-9 patients diagnosed in the period 1975–2001, and Z be the subset
of patients diagnosed in the period 1986–2000. For each cancer site of interest let W+ be the set of
patients randomly sampled from W and Z+ the subset of W+ containing only patients diagnosed in
the period 1986-2000. Notice that whilst W and W+ are of equal size, the size of Z+ varies, and in
general will differ from the size of Z.

The resampling W+ ∼ W is performed B = 400 times and a set of Z+
1 , . . . , Z

+
B is selected. For

each sample Z+
b we compute:

a) the 15-year limited duration prevalence N+
x,b, for x = 0, . . . , agemax, and its standard deviation

by SEER*Stat software, and obtain a [B × agemax] matrix, where each row corresponds to a
simulation of limited duration prevalence computed for each age group;

b) the incidence and survival parameter vector ψ+

b
, and obtain a [B × p] matrix;

c) the completeness index R+
x,b = Rx(L;ψ

+

b
), for x = 0, . . . , agemax, and its standard deviation via

COMPREV software, and obtain a [B × agemax] matrix.

From this data we can compute cov+(Ñx, Ry) and cov+(Ñx, Ny) which are plugged in (7):

cov+(Ñx, Ry) =
1

B

B
∑

b=1

(N+
x,b − N̄+

x )(R
+
y,b − R̄+

y ) ,

cov+(Ñx, Ñy) =
1

B

B
∑

b=1

(N+
x,b − N̄+

x )(N
+
y,b − N̄+

y ) , (11)

where N̄+
x and R̄+

y are the averages over the B samples of the simulated limited duration prevalence
at age x and completeness index at age y, respectively.

Table 1 reports the results of the simulation for three cancer sites: breast and cervix for females,
and colon rectum for males; N∗ is the estimated complete prevalence obtained from (1); ”full” is the
variance of complete prevalence as obtained by applying (7); ”approx.” is the simplified form of the
variance of complete prevalence as obtained by applying (8); and finally ”naive” is the estimation of
var(N∗) in the hypothesis that all covariances in (3) are null

agemax
∑

x=0

var(N∗
x) (12)

The results of the simulation empirically confirm (9): var2(N
∗) is an easier-to-compute upper

bound of var(N∗).
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Table 1: Complete prevalence and standard deviation computed with formulae (7), (8) and (12).
Simulated data on female breast and cervix and male colon cancers collected by SEER-9 registry in
period 1986-2000; prevalence date: Jan 1, 2001.

standard deviation
cancer site N∗ full: from (7) approx.: from (8) naive: from (12)

breast 196,024 416 606 333
cervix 24,116 343 484 113
colon 44,741 202 265 103

5 Computing cov(Rx, Ry)

Recall that in Gigli (2001) variance of the completeness index Rx was computed via the approximation
(2):

var[Rx(L; ψ̂)] ≈

(

∂Rx

∂ψ

∣

∣

∣

ψ=ψ̂

)T

V̂

(

∂Rx

∂ψ

∣

∣

∣

ψ=ψ̂

)

=
p
∑

i,j=1

(

∂Rx

∂ψi

)

×

(

∂Rx

∂ψj

)

× cov(ψi, ψj) (13)

where ∂Rx/∂ψ = (∂Rx/∂ψ1, . . . , ∂Rx/∂ψp) is the vector of partial derivatives of Rx with respect to

the incidence and survival parameters and V̂ is the estimated covariance matrix of ψ̂.
Here (4) applies

cov(Rx, Ry) ≈
p
∑

i,j=1

(

∂Rx

∂ψi

)

×

(

∂Ry

∂ψj

)

× cov(ψi, ψj). (14)

A Fortran program called ”comprev.f” was developed in order to compute (13):

c computing the s.e. of the completeness index
write(3,*)
write(3,*) ’ STANDARD ERROR OF COMPLETENESS INDEX’
write(3,*) ’age completeness se(completeness)’
do 3014 jage=1,nage
3014 var(jage)=0.0d0
do 3215 jage=1,nage
agecor=17+jage*5
do 3115 ider=1,id
do 3125 kder=1,id
3125 var(jage)=var(jage)+ dercompl(jage,ider)*dercompl(jage,kder)*cov(ider,kder)
3115 continue
var(jage)=dsqrt(var(jage))
write(3,500) agecl(jage),compl(jage),var(jage)
write(4,700) agecor,compl(jage),var(jage)
3215 continue
500 format(A5,1X,f6.4,1x,f14.12)
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700 format(i3,1x,f6.4,1x,f14.12)

Now, in order to compute (14) the following modification needs to be implemented:

do 3215 jage=1,nage
do 3220 lage=1,nage
agecor=17+jage*5
do 3115 ider=1,id
do 3125 kder=1,id
3125 var(jage,lage) = var(jage,lage) + dercompl(jage,ider) * dercompl(lage,kder) * cov(ider,kder)
3115 continue
3220 continue
3215 continue

References

• Capocaccia R, De Angelis R (1997). Estimating the completeness of prevalence based on cancer
registry data. Statistics in Medicine, 16, 425–440.

• Clegg LX, Gail MH, Feuer EJ (2002). Estimating the variance of disease-prevalence estimates
from population-based registries. Biometrics, 55, 1137–1144.

• Gail MH, Kessler L, Midthune D, Scoppa S (1999). Two approaches for estimating disease
prevalence from population-based registries of incidence and total mortality. Biometrics, 55,
1137–1144.

• Gigli A. (2001) The variance of the completeness index, IRP W.P. 3/2001.

• Gigli A, Mariotto A, Clegg LX, Tavilla A, Corazziari I, Hachey M, Scoppa S, Capocaccia R
(2006). Estimating the variance of cancer prevalence from population-based registries. Statis-
tical Methods for Medical Research, 15, p. 235–253.

• Verdecchia A, Capocaccia R, Egidi V, Golini A (1989). A method for the estimation of chronic
disease morbidity and trends from mortality data. Statistics in Medicine, 8, 201–216.

6


